Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EJNMMI Res ; 12(1): 49, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35962869

RESUMO

The experimental outcomes of small-animal positron emission tomography (PET) imaging with 18F-labelled fluorodeoxyglucose (18F-FDG) can be particularly compromised by animal preparation and care. Several works intend to improve research reporting and amplify the quality and reliability of published research. Though these works provide valuable information to plan and conduct animal studies, manuscripts describe different methodologies-standardization does not exist. Consequently, the variation in details reported can explain the difference in the experimental results found in the literature. Additionally, the resources and guidelines defining protocols for small-animal imaging are scarce, making it difficult for researchers to obtain and compare accurate and reproducible data. Considering the selection of suitable procedures key to ensure animal welfare and research improvement, this paper aims to prepare the way for a future guideline on mice preparation and care for PET imaging with 18F-FDG. For this purpose, a global standard protocol was created based on recommendations and good practices described in relevant literature.

2.
Front Physiol ; 13: 906110, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846002

RESUMO

Lately, the use of zebrafish has gained increased interest in the scientific community as an animal model in preclinical research. However, there is a lack of in vivo imaging tools that ensure animal welfare during acquisition procedures. The use of functional imaging techniques, like Positron Emission Tomography (PET), in zebrafish is limited since it requires the animal to be alive, representing a higher instrumentation complexity when compared to morphological imaging systems. In the present work, a new zebrafish enclosure was developed to acquire in vivo images while monitoring the animal's welfare through its heartbeat. The temperature, dissolved oxygen, and pH range in a closed aquatic environment were tested to ensure that the conditions stay suitable for animal welfare during image acquisitions. The developed system, based on an enclosure with a bed and heartbeat sensors, was tested under controlled conditions in anesthetized fishes. Since the anesthetized zebrafish do not affect the water quality over time, there is no need to incorporate water circulation for the expected time of PET exams (about 30 min). The range of values obtained for the zebrafish heart rate was 88-127 bpm. The developed system has shown promising results regarding the zebrafish's heart rate while keeping the fish still during the long imaging exams. The zebrafish enclosure ensures the animal's well-being during the acquisition of in vivo images in different modalities (PET, Computer Tomography, Magnetic Resonance Imaging), contributing substantially to the preclinical research.

3.
Phys Rev Lett ; 127(8): 082501, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34477443

RESUMO

The COMPASS Collaboration experiment recently discovered a new isovector resonancelike signal with axial-vector quantum numbers, the a_{1}(1420), decaying to f_{0}(980)π. With a mass too close to and a width smaller than the axial-vector ground state a_{1}(1260), it was immediately interpreted as a new light exotic meson, similar to the X, Y, Z states in the hidden-charm sector. We show that a resonancelike signal fully matching the experimental data is produced by the decay of the a_{1}(1260) resonance into K^{*}(→Kπ)K[over ¯] and subsequent rescattering through a triangle singularity into the coupled f_{0}(980)π channel. The amplitude for this process is calculated using a new approach based on dispersion relations. The triangle-singularity model is fitted to the partial-wave data of the COMPASS experiment. Despite having fewer parameters, this fit shows a slightly better quality than the one using a resonance hypothesis and thus eliminates the need for an additional resonance in order to describe the data. We thereby demonstrate for the first time in the light-meson sector that a resonancelike structure in the experimental data can be described by rescattering through a triangle singularity, providing evidence for a genuine three-body effect.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 172: 163-167, 2017 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-27133357

RESUMO

Rare earth orthosilicates are among the most widely used scintillator materials in the last decades. Particularly, lutetium-yttrium oxyorthosilicate (LYSO) is known to exhibit great potentialities in the field of radiation detectors for medical imaging. Consequently, an in-depth knowledge of the material properties is of utmost interest for the mentioned applications. In this work the spectroscopic properties of commercial cerium doped lutetium-yttrium oxyorthosilicate crystals (LYSO:Ce) were investigated by Raman spectroscopy, steady state photoluminescence, photoluminescence excitation and time resolved photoluminescence. Site selective excitation was used under steady state (325nm) and pulsed (266nm) conditions to separately investigate the temperature dependence of the 5d→4f Ce1 and Ce2 luminescence, allowing to establish the thermal quenching dependence of the Ce2 optical center. In the case of the Ce1 optical center, a luminescence quantum efficiency of 78% was obtained from 14K to room temperature with 266nm photon excitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA